SMOOTH MANIFOLDS FALL 2022 - HOMEWORK 6

SOLUTIONS

Problem 1. Let G be a connected Lie group. Show that $Z(G)=\operatorname{ker}(\mathrm{Ad})$, where $Z(G)=$ $\{g \in G: g h=h g$ for all $h \in G\}$.

Solution. We will show that $Z(G) \subset \operatorname{ker}(\mathrm{Ad})$ and $\operatorname{ker}(\mathrm{Ad}) \subset Z(G)$. First, suppose that $g \in Z(G)$. Then $g h=h g$ for all $h \in G$, and in particular, $L_{g}=R_{g}$. Since $\operatorname{Ad}(g)=\left(L_{g}\right)_{*}$ by definition, it follows that

$$
\operatorname{Ad}(g)=\left(L_{g}\right)_{*}=\left(R_{g}\right)_{*}=\operatorname{Id}
$$

since every vector field in $\operatorname{Lie}(G)$ is right-invariant. Hence $g \in \operatorname{ker}(\mathrm{Ad})$.
Now, assume that $g \in \operatorname{ker}(\mathrm{Ad})$, and let h be in the image of the exponential map, so $h=\exp (X)$ for some $X \in \operatorname{Lie}(G)$. Then

$$
g h g-1=g \exp (X) g^{-1}=\exp (\operatorname{Ad}(g) X)=\exp (X)=h
$$

and $g h=h g$. Since G is connected, the image of the exponential map generates G. Hence, g commutes with all elements of G, and $g \in Z(G)$.
Problem 2. Classify the 2-dimensional connected Lie subgroups of Heis $=\left\{\left(\begin{array}{lll}1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right): x, y, z \in \mathbb{R}\right\}$.
Solution. We claim that the only two-dimensional subgroups are of the form

$$
G=\left\{\left(\begin{array}{ccc}
1 & t a & s+\frac{a b}{2} t^{2} \\
0 & 1 & t b \\
0 & 0 & 1
\end{array}\right): s, t \in \mathbb{R}\right\}
$$

Indeed, one may check that G is the image of the following Lie subalgebra under exp:

$$
\mathfrak{g}=\left\{\left(\begin{array}{ccc}
0 & t a & s \tag{}\\
0 & 0 & t b \\
0 & 0 & 0
\end{array}\right): s, t \in \mathbb{R}\right\}
$$

Since every connected Lie subgroup has a unique associated Lie subalgebra, it suffices to show that the subalgebras \mathfrak{g} are the only 2-dimensional subalgebras of Lie(Heis).

Let $\mathfrak{g} \subset \operatorname{Lie}($ Heis $)$ be an arbitrary two dimensional subalgebra. Choose the following generators of Lie(Heis):

$$
X=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad Y=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad Z=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then \mathfrak{g} must have two basis vectors which are linearly independent combinations of X, Y and $Z, V_{1}=a_{1} X+b_{1} Y+c_{1} Z$ and $V_{2}=a_{2} X+b_{2} Y+c_{2} Z$. We claim first that $Z \in \mathfrak{g}$. If V_{1} or V_{2} is a
multiple of Z, we are done. Otherwise, for $i=1,2,\left(a_{i}, b_{i}\right) \neq(0,0)$. Note that Z commutes with X and Y, and $[X, Y]=Z$. Hence

$$
\left[V_{1}, V_{2}\right]=\left(a_{1} b_{2}-b_{1} a_{2}\right) Z .
$$

If this is a nonzero vector, we have shown a multiple of Z, and hence Z itself is contained in \mathfrak{g}, since it must be closed under Lie brackets. If this is zero, then the vectors (a_{1}, b_{1}) and (a_{2}, b_{2}) are proportional. But $\left(a_{1}, b_{1}, c_{1}\right)$ and $\left(a_{2}, b_{2}, c_{2}\right)$ cannot be proportional since V_{1} and V_{2} are linearly independent. Hence some linear combination of V_{1} and V_{2} has 0 as the coefficient of X and Y and a nonzero coefficient of Z. That is, Z is in the span of V_{1} and V_{2}. Hence in all cases, $Z \in \mathfrak{g}$.

Finally, observe that any other vector in $V_{0} \in \operatorname{Lie}(H e i s)$ will span a subalgebra of Lie(Heis), since $Z \in Z$ (Heis). We may without loss of generality assume it is a linear combination of X and Y since we may subtract any multiple of Z and still yield a basis. That is, any two-dimensional subalgebra must be spans of Z and some element $a X+b Y$, which are exactly the algebras in $\left(^{*}\right)$.

Problem 3. Let G be the group of transformations of \mathbb{R}^{2} obtained by compositions of tranlsations and homotheties $x \mapsto \lambda x$ for $\lambda \in \mathbb{R}_{+}$.
(1) Show that G is center-free (ie, that $Z(G)=\{e\}$).
(2) Find vector fields on \mathbb{R}^{2} generating the actions by homotheties and translations.
(3) Show that the vector fields of the previous part form the basis of a Lie algebra (ie, that they span a space closed under Lie brackets).
(4) Compute the adjoint representation of its Lie algebra in the basis of the previous part.
(5) Build a matrix group H isomorphic to G.

Solution. Throughout, we let $T_{v}(x)=x+v$ be the translation along the vector v and $H_{\lambda}(x)=\lambda x$ be the homothety which is the multiplication by λ.
(1) Suppose that g is a composition of the maps $T_{v_{i}}$ and $H_{\lambda_{j}}$ in some arbitrary, but fixed order. Since the derivative of $T_{v_{i}}$ is always the identity at every point and the derivative of $H_{\lambda_{j}}$ is always $\lambda_{j} \mathrm{Id}$ at every point, regardless of the order of composition, the derivative of g is some $\left(\prod \lambda_{j}\right) \cdot \mathrm{Id}=\mu_{g} \cdot$ Id. If $\mu_{g}=1$, then g itself is a translation (by the fundamental theorem of calculus), so it does not commute with all homotheties. If $\mu_{g} \neq 1$, then g does not commute with translations, since if it did,

$$
g(x)+v=T_{v}(g(x))=g\left(T_{v}(x)\right)=g(x+v)=g(x)+\mu_{g} v
$$

where the last equation follos from the fact that $d g(x)=\mu_{g}$. Id at every point and the fundamental theorem of calculus. In particular, this can only hold if $\mu_{g}=1$. Hence, any element of G has something which fails to commute with it.
(2) Observe that the homotheties are a 1-parameter subgroup, and act via the flow $\varphi_{t}(x)=e^{t} x$. The generating vector field of this flow is obtained by differentiating in t, yielding

$$
X=\frac{\partial}{\partial x_{1}} x_{1}+\frac{\partial}{\partial x_{2}} x_{2}
$$

Similarly, the translations are generated by the vector fields $Y_{i}=\frac{\partial}{\partial x_{i}}, i=1,2$, since they are generated by the horizontal and vertical flows $\psi_{t}^{(i)}(x)=x+t e_{i}$.
(3) We compute the Lie brackets directly:

$$
\left[X, Y_{1}\right]=-Y_{1} \quad\left[X, Y_{2}\right]=-Y_{2} \quad\left[Y_{1}, Y_{2}\right]=0
$$

Since the pairwise Lie brackets are contained in the span of $\left\{X, Y_{1}, Y_{2}\right\}$, it follows that their span is a Lie algebra of vector fields.
(4) We compute the adjoint action of $W=t X+v_{1} Y_{1}+v_{2} Y_{2}$ in the ordered basis $\left\{Y_{1}, Y_{2}, X\right\}$:

$$
\operatorname{ad}(W)=\left(\begin{array}{ccc}
-t & 0 & v_{1} \\
0 & -t & v_{2} \\
0 & 0 & 0
\end{array}\right)
$$

(5) Since G is center free, it follows that Ad is an isomorphism onto its image by the first part. Since the image of Ad is generated by elements of the form $\exp (\operatorname{ad}(W)), W \in \operatorname{Lie}(G)$, we compute a matrix group isomorphic to G by exponentiating the matrices $\operatorname{ad}(W)$:

$$
\operatorname{Ad}(\exp (W))=\exp (\operatorname{ad}(W))=\left(\begin{array}{ccc}
e^{-t} & 0 & \left(1-e^{-t}\right) / t \cdot v_{1} \\
0 & e^{-t} & \left(1-e^{-t}\right) / t \cdot v_{2} \\
0 & 0 & 1
\end{array}\right)
$$

By varying $\left(t, v_{1}, v_{2}\right) \in \mathbb{R}^{3}$, we see that we may achieve any matrix in the following group, which is hence isomorphic to G :

$$
\left\{\left(\begin{array}{ccc}
\lambda & 0 & v_{1} \\
0 & \lambda & v_{2} \\
0 & 0 & 1
\end{array}\right): \lambda>0,\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}\right\}
$$

