
SMOOTH MANIFOLDS FALL 2022 - HOMEWORK 6

SOLUTIONS

Problem 1. Let G be a connected Lie group. Show that Z(G) = ker(Ad), where Z(G) =
{g ∈ G : gh = hg for all h ∈ G}.

Solution. We will show that Z(G) ⊂ ker(Ad) and ker(Ad) ⊂ Z(G). First, suppose that g ∈ Z(G).
Then gh = hg for all h ∈ G, and in particular, Lg = Rg. Since Ad(g) = (Lg)∗ by de�nition, it

follows that

Ad(g) = (Lg)∗ = (Rg)∗ = Id

since every vector �eld in Lie(G) is right-invariant. Hence g ∈ ker(Ad).
Now, assume that g ∈ ker(Ad), and let h be in the image of the exponential map, so h = exp(X)

for some X ∈ Lie(G). Then

ghg−1 = g exp(X)g−1 = exp(Ad(g)X) = exp(X) = h,

and gh = hg. Since G is connected, the image of the exponential map generates G. Hence, g
commutes with all elements of G, and g ∈ Z(G). □

Problem 2. Classify the 2-dimensional connected Lie subgroups ofHeis =


1 x z
0 1 y
0 0 1

 : x, y, z ∈ R

.

Solution. We claim that the only two-dimensional subgroups are of the form

G =


1 ta s+ ab

2 t
2

0 1 tb
0 0 1

 : s, t ∈ R

 .

Indeed, one may check that G is the image of the following Lie subalgebra under exp:

(*) g =


0 ta s
0 0 tb
0 0 0

 : s, t ∈ R

 .

Since every connected Lie subgroup has a unique associated Lie subalgebra, it su�ces to show

that the subalgebras g are the only 2-dimensional subalgebras of Lie(Heis).
Let g ⊂ Lie(Heis) be an arbitrary two dimensional subalgebra. Choose the following generators

of Lie(Heis):

X =

0 1 0
0 0 0
0 0 0

 Y =

0 0 0
0 0 1
0 0 0

 Z =

0 0 1
0 0 0
0 0 0

 .

Then g must have two basis vectors which are linearly independent combinations of X, Y and

Z, V1 = a1X + b1Y + c1Z and V2 = a2X + b2Y + c2Z. We claim �rst that Z ∈ g. If V1 or V2 is a
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multiple of Z, we are done. Otherwise, for i = 1, 2, (ai, bi) ̸= (0, 0). Note that Z commutes with X
and Y , and [X,Y ] = Z. Hence

[V1, V2] = (a1b2 − b1a2)Z.

If this is a nonzero vector, we have shown a multiple of Z, and hence Z itself is contained in g,
since it must be closed under Lie brackets. If this is zero, then the vectors (a1, b1) and (a2, b2) are
proportional. But (a1, b1, c1) and (a2, b2, c2) cannot be proportional since V1 and V2 are linearly

independent. Hence some linear combination of V1 and V2 has 0 as the coe�cient of X and Y and

a nonzero coe�cient of Z. That is, Z is in the span of V1 and V2. Hence in all cases, Z ∈ g.
Finally, observe that any other vector in V0 ∈ Lie(Heis) will span a subalgebra of Lie(Heis), since

Z ∈ Z(Heis). We may without loss of generality assume it is a linear combination of X and Y since

we may subtract any multiple of Z and still yield a basis. That is, any two-dimensional subalgebra

must be spans of Z and some element aX + bY , which are exactly the algebras in (*). □

Problem 3. Let G be the group of transformations of R2 obtained by compositions of tranlsations

and homotheties x 7→ λx for λ ∈ R+.

(1) Show that G is center-free (ie, that Z(G) = {e}).
(2) Find vector �elds on R2 generating the actions by homotheties and translations.

(3) Show that the vector �elds of the previous part form the basis of a Lie algebra (ie, that they

span a space closed under Lie brackets).

(4) Compute the adjoint representation of its Lie algebra in the basis of the previous part.

(5) Build a matrix group H isomorphic to G.

Solution. Throughout, we let Tv(x) = x+ v be the translation along the vector v and Hλ(x) = λx
be the homothety which is the multiplication by λ.

(1) Suppose that g is a composition of the maps Tvi and Hλj
in some arbitrary, but �xed order.

Since the derivative of Tvi is always the identity at every point and the derivative of Hλj

is always λjId at every point, regardless of the order of composition, the derivative of g is

some (
∏
λj) · Id = µg · Id. If µg = 1, then g itself is a translation (by the fundamental

theorem of calculus), so it does not commute with all homotheties. If µg ̸= 1, then g does

not commute with translations, since if it did,

g(x) + v = Tv(g(x)) = g(Tv(x)) = g(x+ v) = g(x) + µgv

where the last equation follos from the fact that dg(x) = µg · Id at every point and the

fundamental theorem of calculus. In particular, this can only hold if µg = 1. Hence, any

element of G has something which fails to commute with it.

(2) Observe that the homotheties are a 1-parameter subgroup, and act via the �ow φt(x) = etx.
The generating vector �eld of this �ow is obtained by di�erentiating in t, yielding

X =
∂

∂x1
x1 +

∂

∂x2
x2

Similarly, the translations are generated by the vector �elds Yi =
∂
∂xi

, i = 1, 2, since they

are generated by the horizontal and vertical �ows ψ
(i)
t (x) = x+ tei.

(3) We compute the Lie brackets directly:

[X,Y1] = −Y1 [X,Y2] = −Y2 [Y1, Y2] = 0.
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Since the pairwise Lie brackets are contained in the span of {X,Y1, Y2}, it follows that
their span is a Lie algebra of vector �elds.

(4) We compute the adjoint action of W = tX + v1Y1 + v2Y2 in the ordered basis {Y1, Y2, X}:

ad(W ) =

−t 0 v1
0 −t v2
0 0 0


(5) Since G is center free, it follows that Ad is an isomorphism onto its image by the �rst part.

Since the image of Ad is generated by elements of the form exp(ad(W )), W ∈ Lie(G), we
compute a matrix group isomorphic to G by exponentiating the matrices ad(W ):

Ad(exp(W )) = exp(ad(W )) =

e−t 0 (1− e−t)/t · v1
0 e−t (1− e−t)/t · v2
0 0 1


By varying (t, v1, v2) ∈ R3, we see that we may achieve any matrix in the following group,

which is hence isomorphic to G:
λ 0 v1
0 λ v2
0 0 1

 : λ > 0, (v1, v2) ∈ R2


□
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